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LEITER TO THE EDITOR 

Stochastic models for species formation in evolving populations 
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France 

Received 17 June 1991, in final form 31 July 1991 

Abstract. We introduce a simple model for sexual reproduction in a Rat fitness landscape, 
the species formation model, which leads to a spontaneous division of a population into 
species. In this model mating between individuals is permitted only if their separation i n  
genome space is less than a given value. This model shows non-self-averaging effects i n  
the overlap distribution similar to what is observed i n  a one parent model representing 
asexual reproduction, and in contrast to a simpler model for scxud reproduction, the 
homogeneous population model, in which random pairing of individuals is permitted. 

The theory of spin glasses, as developed in the past decade, led to an understanding 
of several features which characterize the spin-glass phase (at least at the mean field 
level): multivalley landscape, non-self-averaging effects, broad distribution P ( q )  of 
the overlap etc (Mizard et al [l]). Although there is still a debate whether the mean 
field theory applies to real 3~ spin glasses, the concepts orginally introduced for spin 
glasses are useful in other areas of physics (random interfaces, optimization etc) and 
biology (neural networks, protein folding, evolution etc). In this paper we discuss 
models of evolving populations with both sexual and asexual reproduction which seem 
to possess some features of the spin-glass phase. 

Kauffman et al [Z ]  have studied models for evolution in which the population is 
represented as a point evolving towards a local optimum in a rugged fitness landscape. 
Eigen et al [3] have studied populations of self-replicating macromolecules in which 
the replication rates of the sequences depend on the concentration of other sequences 
present, thus defining a complex fitness landscape which itself evolves in time. 

Recently it was shown that even for a model of asexual reproduction in a flat fitness 
landscape (Derrida and Peliti [4]) the fluctuations in the number of descendants of 
each individual could lead to a non-trivial structure of overlaps in genome space. We 
refer to this as the one parent model (OPM). The most direct extension of this to sexual 
reproduction (Serva and Peliti [SI) allows random pairing between individuals. We 
will call this the homogeneous population model (HPM) since it leads to a uniform 
population, hut in which pairing is only allowed between individuals closer than a 
certain distance in genome space. This model has non-self-averaging properties similar 
to those of the OPM. 

In these three models each individual U is represented by a sequence of N king 
spins {Sy, . . , , S:} which we call its genome. The number M of individuals at each 
generation is kept constant and this introduces a competition between the descendants 
of different individuals. 
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In the OPM each individual at generation T has a parent chosen at random from 
the M individuals at generation T-1. The genome is inherited from the parent with 
small probability of errors governed by mutation rate p. Thus if G ( a )  is the parent 
of a then 

Sp =S~'" ' -probabi l i tyf( l  +e-'")= -Sy'a)-probability$(l-e-2p). (1) 

These probabilities result from a probability pddf of mutation occurring in an 
infinitesimal time dt. Using an analogy with the random map model (Derrida and 
Bessis [ 6 ] )  many properties of the genealogical tree and overlap distribution of the 
OPM can be calculated analytically [4]. 

The HPM is defined in a similar way [5]. Each individual 01 has two distinct parents 
G,(a)  and G,(a) chosen at random from the previous generation. Each spin S y  is 
inherited from either G , ( a )  or G2(m) with equal probability, with the same probability 
of faithful copying or mutation as in equation (1). 

A natural measure of the similarity of two individuals is their overlap 

In the limit N + m  the models can be simulated directly by manipulating the overlap 
matrix f P  rather than storing all the genome sequences. 

In the OPM if the overlap between the parents G ( u )  and G ( p )  of two individuals 
is qG'"'G'B' then the expectation value of the overlap of 01 and p is 

(3) 

If N is infinite (3) becomes a deterministic rule for updating the overlap matrix, since 
fluctuations about the expectation value become negligible (of order I/m). We thus 
simulate the OPM by choosing the set of parents G(u)  at random and updating the 
matrix using (3). The diagonal elements 4"" are kept equal to 1 always. If two 
individuals have a common ancestor T"' generations ago then their overlap is q*' = 
e~p(-4pT"~)) .  Thus there is a direct relation between the overlaps and the branching 
times on the genealogical tree. 

There is an equivalent rule for updating the overlap matrix for the H P M  in the limit 
N+m.  The pair of spins SpSf is inherited from one of the four combinations of 
parents of the two individuals with equal probability. Therefore 

a@ - e-41. GI'z)G(P)  4 -  4 

4 4 -  ). (4) ( q G " " ~ G , l P ~ + q C ~ ~ O ~ G , l P l +  G,l.=IG>lP)+ G.blGJP) f P  = _  
4 

Once again f a  = 1 always. 
The results of simulations of  the OPM with population M = 2000 and mutation rate 

p = I/SOOO are shown in figure 1. Initially all the elements qeP = 1. The bottom curve 
shows the distribution P ( q )  of the non-diagonal elements qPP after an equilibration 
time of 4000 generations. Each subsequent curve (moving upwards) shows P ( q )  100 
generations after the previous one. We see that P ( q )  is non-self-averaging, i.e. it is not 
the same at each instant in time, and bears no resemblance to the time averaged 
distribution m. In fact in [4] it was shown that P ( q ) = A q * - '  where A = 1/4pM. In 
this example A = 1 and P ( q )  is a constant. 

- 
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Figure 1. The overlap distribution P(q) in the one parent model with M=2000 and 
f i  = l/8000 at four separate timer. The earliest is at the bottom and subsequent curves 
(moving upwards) are at intervals of 100 generations. Peaks drift exponentially towards 
q = 0 (e.g. . $ and B).  Some branches of the population (e.g. peak C )  became extinct, whilst 
new peaks are forming constantly at q =  1. 

Typically in figure 1 there are a large number of small peaks close to q = 1 and a 
small number of larger peaks at lower q values. This shows that the genealogical tree 
has many small branches at recent times which are descended from a few larger 
branches at earlier times. If we go hack a time of order M generations in the past all 
the individuals are descended from the same ancestor. 

For the HPM our results are shown in figure 2 for M =2000 and p = l/SOOO. P ( q )  
is shown at four times at intervals of 100 generations. There is essentially no difference 
between the curves: the model is self-averaging. For large M there is a probability 
4/ M that two individuals have one parent in common. Hence, to order 1/ M, the mean 
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overlap at time T satisfies the following recursion 

If p<< 1, the mean overlap tends towards the stationary value 90= 1/(1+4+M). As 
calculated by Serva and Peliti [51, P(9)  has a single peak at 9,,. which is t in figure 2. 
Subsidiary peaks are seen at slightly higher 9 values, corresponding to pairs of 
individuals having an ancestor in common in a recent generation. These subsidiary 
peaks, and the variance of the distribution (which is also of order 1/M) will disappear 
for large populations. This simplest version of a two-parent model therefore does not 
show the interesting properties of the OPM. 

We now define the species formation model by introducing a parameter 9min and 
only allowing pairing between individuals with overlap This represents the fact 
that organisms too genetically different cannot produce a viable offspring. For each 
individual in the new generation the first parent G , ( a )  is chosen at random. The second 

If there is no second individual satisfying this requirement then a new first parent is 
chosen. The spins are then inherited from one or other of the parents, and mutations 
occur as before (equation ( 1 ) ) .  In the long genome limit N + m the overlap matrix is 
updated as in (3). 

We saw that all the overlaps in the HPM were close to a mean value 90. The 
introduction of a 9min therefore only makes a difference if 9min 3 90. Figures 3 and 4 
show simulations of the SFM using the overlap matrix (limit N + a)) with 9,,,;" = 0.65 
and 0.9, again for M =ZOO0 and p = 1/8000, so that 90= 1/2. As in figure 1 P(9)  is 
shown at intervals of 100 generations with time moving upwards. Once again the 
distribution is a series of sharp peaks which move with time, indicating that the 
population has divided spontaneously into species. 

parent G,( a) is then chosen at random from those individuals having qGl '"'G2'"'  z= 9min. 

0.2 0.6 0.6 a.8 1.0 
q 

0 

Figure 3. T h e  overlap distribution far the species formation model with M =2000, += 
1/8000 and q,,.=O.65. P (q )  is shown at intervals of 100 generations (time moving 
upwards). Two species are present. Peaks A and B are the internal overlaps of members 
of the Same species. These peaks wander randomly in the region q >  qmin .  Peak C is the 
overlap between the two species, which drifts exponentially towards q = 0. 
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Figure 4. As figure 3 with qmi.=0.9. Many species are present, some of which die out, 
and same of which divide. 

We think that this model can be understood qualitatively as follows. For the SFM, 

a species can be defined as a group of individuals having mutual overlaps greater than 
qmin. In figure 3 two species are present, yielding three main peaks. Each species 
behaves like a small version of the homogeneous population model. Because of the 
mixing of the characteristics between individuals within the species, all the overlaps 
between members of a species converge rapidly to a mean value, producing the two 
peaks A and B. If the population of species A is mA then the mean 9 value of species 
A will drift slowly towards its natural value q0(m,) = l / ( l + 4 p m A ) .  However, the 
population of each species changes with time (only the total M = m A + m ,  is fixed), 
thus the mean value of 9 for individuals within a species appears not to be directly 
related to its population. Peak C represents the overlap between the two different 
species. The two species are not interbreeding, therefore the peak drifts exponentially 
towards 9 = 0. Peaks A and B seem to move rather randomly in the region 9 > qmin 
due to stochastic fluctuations in the population sizes mA and m,. Eventually one of 
the species will die out leaving a single population of size M. The mean 9 for this 
species will then tend to drift below qmin since 9 , , ( M ) ~ q m i .  and the population will 
once again have a tendency to split up. 

According to this picture a species will only be stable if its population m is small 
enough such that q o ( m )  2 qmin. Hence the higher qmin the larger the number of species 
and the larger the number of peaks in P ( 9 ) .  Figure 4 shows the case qmin = 0.9. Many 
peaks are seen which drift exponentially through the region 9 < 0.9. The result looks 
very similar to the one parent model i;i figure 1. Thus, in the SFM, large species tend 
to divide into smaller ones, which then either die out or grow into larger ones and 
divide again. This seems to mimic the behaviour of real living populations. 

Many properties of the first two models have been calculated analytically [ 4 , 5 ]  
because the evolution of the overlap matrix is linear. Introducing the qmin constraint 
makes the model highly nonlinear, and we have as yet been unable to find an analytical 
solution. Even quantities such as the mean overlap (9) and its time average can 
only be determined numerically. In figure 5 we show ($ against qmin. For M = 200 
the time average was taken over 40 000 generations, and for M = 100, over 10 000 
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Figure 5. The mean overlap and its fluctuations Sq and Aq far the SFM as a function 
of qmin. Population sizes 200 and 100 arc shown, and p is chosen such that qo= 112 in 
both cases. 

generations. In both cases h ( - 1 / 4 p m )  = 1 and therefore qo= 1/2. This allows direct 
comparison of the two population sizes. We see that m=qo for qminsqO,  and is 
slightly higher when qmin> qo. The rapid rise close to qmin = 1 is probably a finite size 
effect since the typical population of a species is very small in this limit if& is itself 
small. To investi ate the self-averaging effects we also measured (Sq)* = (q )2 -  (m)' 
overbar represents a time average. The quantities Sq and Aq are also shown in figure 
5.  For qmin < qo they should be negligible for large populations. For qmi.> qo the system 
seems to be non-self-averaging since Sq  and Aq are of order 1 and d o  not seem to 
decrease with M. We appear to have a phase transition at qmin = qo. The values of m, 
S q  and A q  for the two populations are very similar which suggests that the SFM is 
governed largely by the parameter A. The values of S q  and Aq have been calculated 
in i4j for the OPM. We see in figure 5 that the measured values for the SFM seem to 
tend to the OPM values for large qmin. 

In this work we have seen that the introduction of a minimum value qmin for the 
overlap of two individuals allowed to interbreed leads to a complex structure in genome 
space: the population breaks u p  into species. The overlap distribution within each 
species is homogeneous, whereas an interesting structure appears between the species, 
which is non-seii-averaging. 

One can think of many modifications to the SFM. First one could allow the size of 
the total population to fluctuate in time. Also one could replace the sharp cut-off 
9 G~'' 'Cz(">_qmin by a smoother condition, i.e. that once G , ( a )  is chosen at random 
the probability of producing an offspring with another G2(a)  is equal t o  some smooth 
function f (qc , '* ) ,  q G 2 ' m ) ) ,  Preliminary simulations suggest that these changes do  not 

has much more drastic effects. Suppose that, instead of choosing G , ( a )  and then 
choosing G2(a)  from only those individuals satisfying the minimum overlap require- 
ment, we choose a pair G , ( a )  a n d  G 2 ( a )  at random. We then allow them to reproduce 
if q"""'"~'"'z qmin. otherwise we choose a new pair. This second method would cause 

and ( A q ) ' = ( q  4 ) - ( q )  , where (.) represents an average within a population and the 

^P^^. .L^ -.."a:.-.:..- -: .......- ^L "2  ̂ I-^_.^ :" I- ~ "--.l.".. ... l.:-I- 
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any small species to disappear very quickly, because the size of the population mi( T +  1)  
of species i at generation T +  1 would be proportional to mf(  T), whereas with the 
original method it is proportional to m,( T), which is more biologically reasonable. 

From a biological point of view [7,8] the models are clearly oversimplified. 
Assuming that genes are inherited independently neglects the linkage between genes 
on neighbouring parts of the same chromosome. Also we do  not distinguish between 
the sexes of individuals (no male or female). Competition between species occurs only 
due to the finite population constraint, and there is no fitness landscape. Nevertheless, 
it is interesting that in spite of all these simplifications a population can produce 
species formation and a complex structure in genome space. The effect of a fitness 
landscape in the OPM has been investigated by Amitrano et U /  [9]. Introduction of a 
fitness landscape into the SFM would not alter the basic effect of division into species. 
Biological speciation is known to be greatly affected by geographical separation of 
sub-populations. We hope to investigate this in subsequent work. Our results suggest, 
however, that geographical separation is not a definite requirement for speciation. 

From the point of view of a theoretical physicist the models are just simple rules 
for the evolution of the matrix 9mB (equations (3) and (4)) which produce complex 
structures in P ( 9 ) .  In the OPM it is clear that the overlap distribution is ultrametric 
(Rammal et nl [lo]) due to the definition of the model. In the SFM the overlaps would 
also appear to be ultrametric since the peak widths are narrow. This feature has arisen 
spontaneously in this model. The rule for evolution of the matrix 9*' leads to a 
spontaneous symmetry breaking in a way similar to that observed in spin glasses [ l ]  
and automata models (Derrida and Flyvbjerg [ 111) .  Inspired by this analogy we may 
develop various approximations to calculate the mean overlap and the typical number 
of species, etc, which we hope to present in future work. Whether one could find 
physical systems for which the overlap matrix evolves according to equations similar 
to (3) and (4) is still unclear to us. 

We thank Luca Peliti for his encouraging comments. 
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